Present at IEEE International Conference on Communications 2025

A Cascade Approach for APT Campaign Attribution in System Event Logs: Technique Hunting and Subgraph Matching

Yi-Ting Huang*, Ying-Ren Guo[†], Guo-Wei Wong[‡], Meng Chang Chen[†]
*National Taiwan University of Science and Technology

[†]Academia Sinica

[‡]National Taiwan University

Background

- Advanced Persistent Threats (APTs) has posed significant challenges to the cybersecurity community.
 - BlackEnergy
 - SolarWinds Compromise
- Differ from traditional malware or botnet attacks, APT campaigns are multistage operations, that is often begin with gaining a foothold in a target environment, followed by prolonged periods of undetected activity, data exfiltration, and system compromise.

Motivation 1

- Holmes [6] and MORSE [7] have shown that combining <u>coarse-grained</u> <u>analysis</u> (which classifies events as benign or malicious) with <u>fine-grained</u> <u>analysis</u> (which maps events to Tactics, Techniques, and Procedures, TTPs) can significantly enhance threat detection capabilities.
- RapSheet [8] and KRYSTAL [9] focus on <u>detecting known attack descriptors</u> to construct contextual attack scenarios, further improving understanding of intrusion activity.

Holmes [S&P19]

RapSheet [S&P20]

Motivation 1

- Holmes and MORSE have shown that combining <u>coarse-grained analysis</u> (<u>which classifies events as benign or malicious</u>) with <u>fine-grained analysis</u> (<u>which maps events to Tactics, Techniques, and Procedures, TTPs</u>) can significantly enhance threat detection capabilities.
- RepSheet and KRYSTAL focus on <u>detecting known attack descriptors to</u> <u>construct contextual attack scenarios</u>, further improving understanding of intrusion activity.

However, these methods typically require manual input to define mapping rules for recognizing attack patterns, which limits their scalability and automation potential.

Holmes [S&P19]

RepSheet [S&P20]

Motivation 2

- Forensic analysis of security incidents, whether to attribute attacks to specific threat actors or align them with known campaigns based on observable artifacts, remains a labor-intensive process.
- Few studies have explored cyber threat attribution based on
 - observable attack stages [10]
 - attacker profiling [11]
 - artifact analysis [12]
- Recognizing intrusion activities as part of known APT campaigns is equally important for improving system defenses and accelerating incident response.

Research purpose

- We propose a machine learning-based Straight Forward Method (SFM) for audit log analysis and APT campaign detection.
- Specifically, the tasks of this study are:
 - 1. Malicious behavior identification: design a neural network detection model to discover malicious behaviors (MITRE ATT&CK TTPs)
 - 2. APT campaign attribution: identify the most likely APT campaign by matching the discovered behaviors with known APT campaigns.

Our intuition

Our intuition

Campaign Graph Query Graph

Straight Forward Method (SFM)

- Event Embedding: Converts textual logs into numerical vectors.
- Technique hunting:
 - Anomaly Detection: Handles event imbalance to highlight suspicious behavior.
 - Attack Pattern Detection: Uses sequence modeling to detect specific TTPs.
- APT campaign matching: Matches to potential actors via graph-based similarity.

Event logs

Time of Day Process Name	PID Operation	Path
09:00:42.519 ■ groupagent.exe	5216 Process Create	e C:\Users\ezk\AppData\Local\Microsoft\Windows\groupagent.exe
09:00:42.519 ■ groupagent.exe 09:00:42-519 ■ groupagent exe	10264 SProcess Start 10264 SThread Create	
09:00:42.519 ■ groupagent.exe	5216 ≝ RegOpenKey	HKLM\System\CurrentControlSet\Control\Session Manager\AppCertDlls
09:00:42.519 ■ groupagent.exe	5216 ≝ RegOpenKey	HKLM\System\CurrentControlSet\Control\Session Manager\AppCertDlls
09:00:42.519 ■ groupagent.exe	5216 ≝ RegOpenKey	HKLM\System\CurrentControlSet\Control\SafeBoot\Option
09:00:42.519 ■ groupagent.exe	5216 ≝ RegOpenKey	HKLM\System\CurrentControlSet\Control\SafeBoot\Option
09:00:42.519 ■ groupagent.exe	5216 ≝ RegOpenKey	HKLM\Software\WOW6432Node\Policies\Microsoft\Windows\Safer\Coc
09:00:42.519 ■ groupagent.exe	5216 ≅ RegOpenKey	HKLM\SOFTWARE\Policies\Microsoft\Windows\Safer\CodeIdentifiers
09:00:42.519 ■ groupagent.exe	5216 ≝ RegSetInfoK	.HKLM\SOFTWARE\Policies\Microsoft\Windows\safer\codeidentifiers

- Event logs are collected from the Process Monitor (ProcMon), which records detailed system activities such as process creation and registry access.
- These logs provide critical information for analyzing system behavior.

Event Embedding

- To process system events, we use an embedding function, **SecureBERT** [14], to convert a single system event into numerical vectors.
- SecureBERT is a domain-specific language model which is trained on a large amount of cybersecurity textual data.
- Event embedding preserves meaningful semantics and contextual relations.

Event Embedding

- Since the SecureBERT embeddings are high-dimensional (768), we further apply **principal component analysis (PCA)** to reduce dimensionality.
- The resulting embeddings serve as features of individual events for subsequent tasks, i.e. anomaly detection and attack pattern detection.

Anomaly Detection

- In real-world scenarios, there is often a significant imbalance between attack and benign events.
 - E.g. in the DARPA TC3 dataset, compared to over 14 million benign events is collected in one day, attack events number only around 5,300 (2600:1).
- To mitigate this, we use a **one-class support vector machine (SVM)** to preserve likely malicious processes.

Attack Pattern Detection

- Since a Technique may involve in more than one events, BiGRU-CRF is employed to identify TTPs within the malicious events.
- Bidirectional Gated Recurrent Units (BiGRU): to process the sequence in both directions.
- Conditional Random Field (CRF): to jointly decode labels across sequences by capturing dependencies among neighboring labels.

Technique Hunting

Anomaly

Detection

Attack Pattern

Detection

Event

Embeddina

APT Campaign Matching

Determining the most likely APT campaign is formulated as graph-matching problem.

Gc: campaign graphs from CTI reports

Gq: discovered TTPs graph from event logs

Node: TTPs

 Edge: a temporal relationship between two TTPs involving the same system entities.

- Subgraph isomorphism problem is NP-complete.
- We observe that nodes within Gq often do not align consistently with nodes in the known campaign Gc due to high FP and FN rates.

APT Campaign Matching

• Graph Edit Distance (GED):

$$GED(G_q,G_c) = \min_{o_1,...,o_m \in \gamma(G_q,G_c)} \sum_{i=1}^m cost(o_i)$$
 - deletion substitution insertion

costs associated with operation

- A measure of similarity between two graphs based on the minimum cost needed to transform one graph into another.
 - **Insertion** (e.g., adding a new technique),
 - **Deletion** (e.g., removing an unmatched technique), and
 - Substitution (e.g., replacing one technique with another).
- The lower the total cost of these operations, the more similar the graphs are.
- The threat actor whose campaign graph has the smallest GED to the query graph is considered the most likely match.

Evaluation Settings

Dataset:

- Five synthetic campaigns from SAGA [30][31]
- 21 Technique labeling

APT Campaign	Attack Stage	Techniques	Event	MalEvent
Higaisa [25]	{1,2,6,4,4,6,6}	PA, MFE, RK, SID, SNCD, MTOS, ST	607,416	0.005%
APT28 [26]	{1,2,2,4,4,7}	PA, WP, MFE, SID, DLS, EWS	1,203,013	1.175%
CobaltGroup [27]	{1,2,4}	PA, RAS, NSD	961,920	0.118%
Gamaredon [28]	{1,2,2,6,6,4,4,6,7}	PA, WP, MFE, MR, RK, WMI, SID, ST, DF	442,729	0.013%
Patchwork [29]	{1,2,3,4,4,6,5}	PA, PS, BUAC, DLS, UD, SD, RK, RDP	155,296	9.095%

PA = phishing Attachment, MFE = Malicious File Execution, RK = Registry Run Keys, SID = System Information Discovery, SNCD = System Network Configuration Discovery, MTOS = Masquerade Task or Service, ST = Scheduled Task, WP = Web Protocols, DLS = Data from Local System, EWS = Exfiltration Over Web Service, RAS = Remote Access Software, NSD = Network Service Discovery, MR = Modify Registry, WMI = Windows Management Instrumentation, DF = Defacement, PS = PowerShell, BUAC = Bypass User Account Control, UD = System Owner/User Discovery, SD = Security Software Discovery, RDP = Remote Desktop Protocol, PEI = Portable Executable Injection, SM = Shortcut Modification, DMT = Disable or Modify Tools, HW = Hidden Window. The subsequent number of a technique represents a distinct ability used to implement that technique [30].

Baseline: Sigma

open and widely used signature format as fine-grained attack patterns

Evaluation on TTPs detection

	Sigma			SFM			
APT Campaign	P	R	F1	P	R	F1	
Higaisa	33.37%	36.11%	33.40%	90.32%	90.48%	87.00%	
APT28	0.00%	0.00%	0.00%	56.30%	62.45%	57.02%	
CobaltGroup	0.28%	29.75%	0.54%	54.82%	72.31%	58.44%	
Gamaredon	25.02%	17.08%	16.71%	73.51%	77.75%	73.21%	
Patchwork	8.13%	21.96%	9.14%	68.60%	68.87%	67.55%	
Avg.	13.36%	20.98%	11.96%	68.71%	74.37%	68.64%	

- Our methodology exhibits substantial performance compared to Sigma.
 - Sigma rules, while designed by experts, only cover portions of attack behaviors, leaving numerous malicious activities undetected

Evaluation on APT campaign attribution performance

- **Top-1 ranking:** 40% correctly matched.
- Top-5 ranking: 60% correctly matched.
- Implication:
 - GED tolerates minor detection errors
 - It narrow down the pool of likely threat actors, even in real-world scenarios.

Conclusion

 This study presents a machine learning-based SFM for identifying potential APT threat actors.

- Results show SFM
 - detects over 60% of techniques successfully from system event logs
 - attributes APT campaigns to the correct threat group within the top 5 ranks in 60% of cases.

 These highlight SFM as a promising approach for APT detection and attribution, helping to narrow down likely threat actors in real-world scenarios.